
Hydrodynamics in curved membranes: The effect of geometry on particulate mobility

Mark L. Henle1 and Alex J. Levine2,3

1School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA

3California Nanosystems Institute, University of California, Los Angeles, California 90095, USA
�Received 17 November 2009; published 12 January 2010�

We determine the particulate transport properties of fluid membranes with nontrivial geometries that are
surrounded by viscous Newtonian solvents. Previously, this problem in membrane hydrodynamics was dis-
cussed for the case of flat membranes by Saffman and Delbrück �P. G. Saffman and M. Delbrück, Proc. Natl.
Acad. Sci. U.S.A. 72, 3111 �1975��. We review and develop the formalism necessary to consider the hydro-
dynamics of membranes with arbitrary curvature and show that the effect of local geometry is twofold. First,
local Gaussian curvature introduces in-plane viscous stresses even for situations in which the velocity field is
coordinate-independent. Secondly, even in the absence of Gaussian curvature, the geometry of the membrane
modifies the momentum transport between the bulk fluids and the membrane. We illustrate these effects by
examining in detail the mobilities of particles bound to spherical and cylindrical membranes. These two
examples provide experimentally testable predictions for particulate mobilities and membrane velocity fields
on giant unilamellar vesicles and membrane tethers. Finally, we use the examples of spherical and cylindrical
membranes to demonstrate how the global geometry and topology of the membrane influences the membrane
velocities and the particle mobilities.
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I. INTRODUCTION

The dynamics of particles embedded in viscous fluid
membranes underlies a number of fundamental biological
processes involving the kinetics of proteins �1�, lipid rafts
�2�, and lipid domains �3� in membranes. Cell-cell signaling,
membrane-cytoskeleton interactions, and viral entry into
cells provide three broad classes of biophysical dynamical
systems whose underlying physics depends on the transport
properties of lipid membranes. The dynamics of particles
trapped at decorated fluid interfaces such as Langmuir mono-
layers �4–7� or liquid-liquid interfaces �8�, as well as the
motion of lipid domains on giant unilamellar vesicles �9�,
provide nonbiological systems in which membrane hydrody-
namics plays a crucial role. Additional examples of such sys-
tems include the kinetics of colloids on liquid droplets during
the formation of colloidosomes �10� and even the dynamics
of polymers adsorbed on a fluid membrane �11�.

To study these dynamics, one must understand the hydro-
dynamics of membrane flows. In this problem, one com-
monly approximates the membrane as two-dimensional �2D�
viscous liquid surrounded above and below by three-
dimensional �3D� ones �4,5,12–14,18�, referred to hereafter
as the embedding fluids. This approximation is valid for films
thin enough that their velocity field gradients in the direction
normal to the film are vanishingly small �15�. We work ex-
clusively in this limit. Moreover, we specialize to the com-
mon case of membranes that are incompressible and imper-
meable to the embedding liquids.

The embedding liquids are coupled to the fluid membrane
by the usual stick and stress balance boundary conditions.
The stick boundary conditions require the velocity of the
embedding liquids at the surface of the membrane to be
equal to the membrane fluid velocity. In this work, we study
only tangential flows in the membrane �i.e., ones that do not

change the membrane geometry� and thus set the normal
velocities to zero on the membrane. Unlike a simple liquid-
liquid interface, the two-dimensional membrane is a distinct
fluid. As a result, the membrane can exert and support
stresses, so that the stress balance condition can lead to a
stress discontinuity between the embedding liquids across
the membrane surface.

The ability of the membrane to support stresses is what
distinguishes membrane hydrodynamics from other problems
in low Reynolds number hydrodynamics. Normally, in the
inertia-free limit, hydrodynamics becomes a scale-free
theory. The analogous low Reynolds number hydrodynamics
problem in a membrane, however, contains a new length
scale set by the ratio of the membrane viscosity �m to the
viscosity � of the embedding liquid. From dimensional
analysis, one sees that their ratio is a length; In deference to
the pioneering work by Saffman and Delbrück �12,16� we
refer to �0=�m /� as the Saffman-Delbrück �SD� length.
Physically, it sets the scale over which in-plane momentum
in the membrane is dissipated by the embedding fluid.

Given that membrane hydrodynamics has an intrinsic
length scale, one may ask how ask that length interacts with
other length scales in determining the flows induced by the
motion of membrane-embedded objects. One obvious candi-
date is the spatial extent of the object itself. Another is the
length introduced by the local geometry of the membrane—
the local radius of curvature. Here, we restrict our analysis to
pointlike objects to focus on the latter. The mobility of ex-
tended objects �8,17� can be studied in terms of a collection
of pointlike ones using the linearity of the hydrodynamic
equations �14,18�. Previous work on the mobility of particles
on a spherical membrane showed that curvature leads to dra-
matic changes in particle mobility when the radius of the
membrane R is at least comparable to the SD length �0
�8,19�. In this article, we extend our previous work to study
the effect of more general membrane geometries on particle
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mobilities and membrane fluid flows in response to particu-
late transport. We rederive the membrane hydrodynamics
equations in their most general covariant form, which allows
us to study the hydrodynamics of membranes of arbitrary
geometry. We also discuss the coupling of this system to the
embedding fluid. Using these results we specialize to two
particular membrane geometries: spherical and cylindrical
membranes. These two cases were chosen since both have
spatially constant curvature, greatly simplifying the solution
of the hydrodynamic equations of the membrane. Moreover,
since the Stokes equation can be readily solved in both
spherical and cylindrical coordinates, we are able to provide
complete analytic solutions for the full problem of the
coupled flows of the membrane and the embedding fluid. The
comparison of these two cases with each other and with the
better known result for a flat membrane allows us to inves-
tigate the differing effects of mean and Gaussian curvature
on particulate mobility and membrane flows.

The comparison of flows on the sphere and the cylinder
also brings to light a dynamical difference that is of a fun-
damentally topological nature by showing how the Euler
characteristic of the surface affects the structure of the flows
on the membrane. On a sphere, the continuous fluid velocity
vector field is required to contain at least two singularities
�20� in the form of sources, sinks, or vortices. For an incom-
pressible membrane, only vortices are permitted. Cylindrical
and flat membranes, having a different Euler characteristic,
require no such singularities. We return to this point later in
the discussion of our results.

Throughout this article, we treat both the membrane and
the embedding fluids as Newtonian. There are numerous ex-
amples of non-Newtonian �i.e., viscoelastic� effects �21,22�
and nonlinear flow effects �23� in membrane dynamics both
in Langmuir monolayers and in composite, biomimetic
membranes �24,25�. By working in the frequency domain,
the results presented below can be readily generalized to
such cases �13�. Finally, we only consider membranes whose
particulate concentrations are low enough that their presence
does not affect the viscosities of either the membrane or the
embedding fluids; we have considered the effects of particle
concentration on these viscosities to linear order in flat mem-
branes previously �25,26�.

The remainder of the paper is organized as follows: in
Sec. II, we derive the equations of membrane hydrodynamics
for an arbitrarily curved and incompressible membrane. Us-
ing these equations, we find the eigenvalue equation that
determines the linearly independent in-plane modes of the
membrane. For surfaces with a constant Gaussian curvature,
the eigenvalue equation simplifies greatly. In Sec. III, we
consider the coupling of an arbitrarily curved membrane to
the embedding fluids that surround it. In Secs. IV and V, we
consider the two simplest nonplanar membrane geometries:
spheres and cylinders. In each of these sections, we find the
membrane modes, solve the bulk Stokes equation, and deter-
mine the response of the system to a point force in the mem-
brane. We then use the point-force response to investigate the
mobility of particles embedded in these membranes.

In this article, we present many of the technical details of
our calculation. For the reader more interested in the princi-
pal results and their interpretation, we collect these remarks

in Sec. VI; We also discuss experimental tests of our results
and open questions in membrane hydrodynamics there. For
this reason we reserve the bulk of our discussion of the im-
plications and meaning of our results for this section while
presenting the mathematical formalism and quantitative re-
sults earlier.

II. STOKES EQUATION FOR A CURVED MEMBRANE;
HYDRODYNAMICS MODES

To derive the Stokes equation for a curved membrane, we
use the same underlying principles of mass and momentum
conservation used to derive the Stokes equation for a bulk
fluid or a flat 2D membrane. The problem of accounting for
local membrane geometry when discussing the dynamics or
statistical physics of curved membranes �27–29� and lamellar
stacks of such membranes �30,31� has been well-studied.
Thus, the application of differential geometry to the problem
of integrating over membrane configurations �to address the
statistics of membrane fluctuations� or of determining the
relation between the local rate of stain and the stresses in the
membrane has been developed. For completeness, we briefly
recount these results here before turning to the problem of
particle mobilities in the membrane.

In order to account for the curvature of the membrane, it
is convenient to express these conservation laws in a mani-
festly covariant form. That is, the components of the mem-
brane fluid velocity vector v� are written in terms of either its
covariant or contravariant: v� and v�, respectively. The par-
tial derivatives �� are replaced by covariant derivatives D�.
Here and throughout this article, we use Greek indices � ,�,
etc. exclusively to indicate in-plane components of the cova-
riant vectors and tensors. One must use care in distinguishing
the covariant and contravariant velocity vectors from the
physical velocity vectors. For instance, the dimensions of v�
and v� differ from each other and from the usual dimensions
of velocity. To avoid confusion in using these results to fit
data, we give the final expressions for the velocity field as
physical velocity vectors distinguished by the notation v� .

We begin with the statement of mass conservation. A
change in fluid density in any area patch A on the membrane
must be due to fluid flow through the boundary curve C of
that patch. In its covariant form, this statement is written as

�

�t
�

A

�dA + �
C

�v�n�ds = 0, �1�

where � is the membrane fluid density and n� is the outward
normal to the curve C. In Eq. �1� and hereafter, we employ
the Einstein summation convention, where repeated indices
�one raised, one lowered� are summed. Using the two-
dimensional divergence theorem �32�, �B�n�ds=�D�B�dA,
we can convert Eq. �1� to a local statement,

��

�t
+ D���v�� = 0. �2�

Similarly, we can write the covariant integral statement of
momentum conservation and use the 2D divergence theorem
to convert this to a local statement. At low Reynolds number,
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we can drop the inertial term, so that the local statement of
momentum conservation is given by

D���� = 0, �3�

where ��� is the momentum current tensor. In this section,
we focus on isolated membranes; the stress exerted on the
membrane by any surrounding fluids, as well as the response
to externally applied stresses, will be taken into account in
the next section by including these stresses in Eq. �3�.

For a flat membrane, the covariant derivatives are equiva-
lent to simple partial derivatives, D�=D�=��, so that Eqs.
�2� and �3� become the familiar statements of mass and mo-
mentum conservation. Indeed, these equations follow di-
rectly from the flat-space equations: they are the only way to
generalize the flat-space equations to account for the locally
varying geometry of an arbitrarily shaped membrane. If we
generalize the usual expression for the momentum current
tensor in the same fashion,

��� = pa�� − �����D
�v�, �4�

where p is the membrane pressure, ����� is the viscosity
tensor, and a�� is the metric tensor for the surface. We have
dropped the inertial term �v�v� from Eq. �4�, because we
assume the Reynolds number for the membrane is small. For
a flat membrane or 3D fluid, the pressure term in the mo-
mentum current is proportional to the Kronecker delta func-
tion 	��. However, 	�� is not a covariant tensor, so for a
curved membrane, it must be replaced by its covariant gen-
eralization a�� �for a flat membrane, a��=	���.

For a flat isotropic membrane, the viscosity tensor �����

must be constructed entirely out of combinations of Kro-
necker delta functions. For a curved isotropic membrane,
then, this tensor must be constructed entirely out of its metric
tensors. Using the fact that the dissipative contribution to the
momentum current must vanish for uniform velocities and
uniform rotations, we find that the most general form of the
viscosity tensor for an isotropic membrane is

����� = �m�a��a�� + a��a��� + �
m − �m�a��a��, �5�

where �m and 
m are the shear and dilational �or bulk� vis-
cosities, respectively. Hereafter, we insist on the incompress-
ibility of the membrane—in other words, we require the
membrane density to be constant in time and space. As a
result, the mass conservation equation �2� implies that the
velocity field is divergence free at all points x� in the mem-
brane,

D�v��x�� = 0. �6�

With this constraint, the dilational viscosity introduced in Eq.
�5� becomes irrelevant and momentum transport within the
membrane depends only on the remaining membrane viscos-
ity �m. The combination of incompressibility and momentum
conservation expressed in Eqs. �4�–�6� generates the Stokes
equation for the membrane fluid,

�m�D�D�v��x�� + D�D�v��x��� = D�p�x�� . �7�

The pressure in the membrane appearing on the right hand
side of Eq. �7� must now be considered to be a Lagrange
multiplier field; it acts as the constraint necessary to enforce

membrane incompressibility as expressed by Eq. �6�. If one
were to allow for membrane compression, an equation of
state for the membrane would be necessary to determine the
fluid velocity and pressure field in the membrane.

For a flat membrane, the covariant derivatives—which re-
duce to simple partial derivatives—clearly commute with
one another. In this case, the second term of Eq. �7� vanishes
for incompressible membranes. This is not the case for co-
variant derivatives of a vector on a curved surface, i.e.,
D�D�v��D�D�v�. In particular, it is straightforward to
show that curvature implies the noncommutativity of the co-
variant derivatives �32,33�. Specifically, for an arbitrary vec-
tor field w��x�� in the two-dimensional manifold of the fluid
membrane,

�D�,D��w��x�� = K�x��w��x�� , �8�

where K�x�� is the local Gaussian curvature at the point x� on
the membrane. The interested reader may consult any text on
basic differential geometry �32,33� for further details.

We can use Eqs. �6� and �8� to simplify Eq. �7�,

�m��v��x�� + K�x��v��x��� = D�p�x�� , �9�

where �	D�D� is the in-plane Laplacian operator acting on
the membrane. This is the Stokes equation for an isolated
membrane of arbitrary curvature. It clearly reduces to the flat
membrane result, �m�v� =�� �p, since the Gaussian curvature
K=0 for a plane �here, �� � is the 2D gradient for the plane�.

In general, the hydrodynamic modes of a membrane con-
sist of shear, compression, and bending deformations. In our
system, the latter two modes are excluded by assumption as
discussed in the introduction. The membrane velocity is thus
composed entirely of shear modes. These modes are eigen-
modes of the velocity-dependent terms in the Stokes equa-
tion �9�. In general, there will be several eigenmodes v��x� ;s�
with eigenvalues �s, so we write the eigenvalue equation as

�m��v��x� ;s� + K�x��v��x� ;s�� = �sv��x� ;s� . �10�

All of these modes must also satisfy the incompressibility
constraint, Eq. �6�. We can automatically enforce this con-
straint by writing the shear modes as the antisymmetric de-
rivative of a scalar function,

v��x� ;s� = ��D
���x� ;s� , �11�

where �� is an antisymmetric tensor defined in terms of the
Levi-Civita tensor e�� by ��=
det ae��. We can use this
complete set of eigenmodes as a basis from which we can
construct any membrane velocity field

v��x�� = �
s

Asv��x� ;s� = �
s

As��D
���x� ;s� . �12�

Using Eqs. �8� and �11�, we can write Eq. �10� as

�m�D��� + 2K�x��D��� = �sD
�� . �13�

For the general case of a membrane with locally varying
Gaussian curvature, this third-order differential eigenvalue
equation is quite challenging to solve analytically. We expect
that for many geometries it must be solved numerically, but
there are dramatic simplifications for cases of constant
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Gaussian curvature. The spherical and cylindrical mem-
branes studied in Secs. IV and V �in addition to planar mem-
branes, where K=0 everywhere� do have constant Gaussian
curvature, rendering them analytically tractable. In these
cases, Eq. �13� simplifies to

���x� ;s� = � �s

�m
− 2K��x� ;s� . �14�

The eigenfunctions ��x� ;s� are clearly the eigenfunctions of
the Laplacian on the membrane surface. For spheres, cylin-
ders, and planes, these are well-known �see below for the
cases of spheres and cylinders�. The shear modes and the
corresponding eigenvalues �s for the membrane follow di-
rectly from these modes.

III. POINT-FORCE RESPONSE OF THE COMBINED
MEMBRANE/EMBEDDING FLUIDS SYSTEM

In the previous section, we considered the velocity modes
of an isolated membrane. In physical systems of interest, the
membrane is coupled to the embedding fluids that surround
it. We treat these embedding fluids as incompressible New-
tonian fluids whose hydrodynamics can be described by a
three-dimensional, incompressible Stokes equation

���� 2v�� = �� p�, �� · v�� = 0. �15�

Here, ��, v��, and p� are the embedding fluid viscosities,
velocities, and pressures, respectively, on either side of the
membrane. For spherical and cylindrical membranes, the “+”
�“−”� superscript denotes the fluid on the exterior �interior�
of the membrane. The coupling of the flows of the membrane
to the flows in the embedding fluids is enforced by the
boundary conditions at the surface of the membrane: the
stick boundary conditions enforce continuity of the velocity
across the membrane, while the stress-balance conditions ac-
count for the transmission of stresses between the embedding
fluids and the membrane.

We can express the stick and stress-balance boundary
conditions for an arbitrary membrane using the normal coor-
dinates for the membrane. These Euclidean coordinates
�u1 ,u2 ,u3� are given by the 2D surface coordinates of the
membrane �u1 ,u2�, along with the distance u3 away from the
membrane surface, measured along the local membrane nor-
mal. For spherical and cylindrical membranes of radius R,
the normal coordinates are simply the three-dimensional
spherical and cylindrical coordinates, respectively, with u3

=r−R. For an arbitrary surface, these coordinates can always
be defined close to the surface. In normal coordinates, the
stick boundary conditions are

vi
��u1,u2,0� = vi�u1,u2� . �16�

By assumption, the membrane velocity in the direction along
its normal vanishes, v3�u1 ,u2�=0. Using this and Eqs. �6�
and �12�, we can re-express the stick boundary conditions
Eq. �16� in a more useful form,

v3
��u1,u2,0� = 0, D�v�

��u1,u2,0� = 0, �17�

��D�v�
��u1,u2,0� = �

s

As���x� ;s� . �18�

For surfaces of constant Gaussian curvature, the Laplacian
�� in Eq. �18� is given by Eq. �14�.

In addition to the stick boundary conditions at the mem-
brane surface, we also require that the embedding fluid ve-
locities vanish at infinity and remain finite everywhere. Fur-
thermore, we note that by writing the membrane velocity as
a combination of shear modes, Eq. �11�, we have implicitly
excluded the possibility of the uniform translation of the
membrane. Since we are interested in the mobility of objects
embedded within the membrane and not the mobility of the
entire membrane through the embedding fluids, this choice
of boundary conditions is appropriate.

The final boundary conditions for this system are given by
the in-plane stress-balance conditions at the membrane sur-
face. For an isolated membrane, these are given by the
Stokes equation �9�. For the membrane/embedding fluids
system, however, the flows in the embedding fluids exert
stresses on the membrane that appear as externally generated
force densities �i.e., forces per unit area� in the stress-balance
condition. To calculate the response of the system to the
motion of a particle embedded in the membrane, we also
include one more externally applied stress that is the force
per unit area applied directly to that particle. Taking these
external stresses into account, the in-plane stress-balance
conditions become

��
ext = − �

s

�sAs��D
���x� ;s� + D�� + ���3

− − ��3
+��u3=0,

�19�

where the bulk fluid stress tensor

�ij
� = ���Div j

� + Djvi
�� − gijp�, �20�

where gij is the 3D metric tensor for the normal coordinates.
We note that the components T�3 of a tensor in 3D normal
coordinates transforms as a 2D covariant vector on the sur-
face u3=0, so Eq. �19� is the covariant version of stress con-
tinuity across the membrane which accounts for the transfer
of momentum between the membrane and the embedding
fluids.

The stick boundary conditions Eqs. �17� and �18� can be
used to solve for the embedding fluid velocities and stresses
in terms of the amplitudes As of the membrane velocity shear
modes. We can eliminate the membrane pressure � from Eq.
�19� by taking the antisymmetric derivative of this equation,

��D���
ext = − �

s

�sAs���x� ;s� + ��D����3
− − ��3

+��u3=0.

�21�

Once we have solved for the amplitudes As of the shear
modes, the membrane pressure can be found by taking the
symmetric derivative of Eq. �19�. However, we will forgo
this calculation for brevity, since our focus is on the mem-
brane velocity and particle mobility.
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We will assume throughout this paper that the radius a of
the particle embedded in the membrane is much smaller than
all other length scales in the problem, specifically the mem-
brane size and the Saffman-Delbrück length. In this case, we
can approximate the stress ��

ext caused by the force F� 0 acting
on the particle by a point stress

��
ext = F0,�	

�2��u� − u�0� , �22�

where 	�2��u� −u�0� is the appropriate Dirac delta function for
the surface and u�0 is the location of the particle. This point-
stress approximation is valid for many of the situations in
which particle mobilities are experimentally measured as
well as the most common biophysical applications of our
work. We can also employ this procedure when studying
extended objects with a large aspect ratio using linear super-
position �8,14,18�. For large circular membrane inclusions,
the calculation must presumably proceed in terms of solving
dual integral equations as done by Hughes et al. �34� and
others �26�.

The final step in our analysis is the computation of the
particle mobility. Due to the linearity of the Stokes equation,
the particle velocity—i.e., the velocity of the membrane at
the location of the point force—must be parallel to the point
force itself. The proportionality constant between the force
and velocity is the particle mobility �,

lim
u�→u�0

v��u�� = �F0,�. �23�

Given our point-force representation Eq. �22� of the stress in
the membrane induced by the motion of the particle, we are
confronted by logarithmic divergences in the particle mobil-
ity at short distances. This is due to the short-distance loga-
rithmic behavior of the inverse Laplacian in two dimensions.
As was recognized originally by Saffman and Delbrück, the
coupling to the embedding fluids regularizes the similar
logarithmic behavior at long distances. This allows for the
definition of an intrinsic particle mobility—i.e., one that does
not depend on the area of the membrane—but does nothing
to fix the similar issue at short distances. Instead, the size a
of the �rigid� particle prevents the short-distance divergence.
We handle this divergence by cutting off the mode spectrum
at a wave number proportional to 1 /a. This procedure has
been shown to correctly reproduce the SD calculation of par-
ticulate mobilities for flat membranes �13�.

IV. SPHERICAL MEMBRANES

We now specialize to the case of a spherical membrane of
radius R. We follow the program discussed above of first
determining shear modes of the membrane for this geometry,
then solving the Stokes equations for the interior and exterior
embedding fluids before finding the coupled modes of the
membrane and embedding fluids linked by the stick and
stress-balance boundary conditions. We then use the com-
plete mode spectrum to calculate the response of the system
to a tangential point force applied to the membrane. We fo-
cus on two results of this calculation. First, we study the
membrane velocity and show how the radius of curvature
and the topology of the sphere affects this velocity. Second,

this calculation �when properly regularized at short dis-
tances� provides the mobility of a point particle on a spheri-
cal membrane. We examine this result for various values of
the ratio of the sphere’s radius to the SD length.

A. Membrane modes

For a sphere of radius R, the Gaussian curvature K
=1 /R2 is constant. As shown in Sec. II, this implies that the
shear eigenmodes for a spherical membrane can be found
from the eigenmodes of the in-plane Laplacian, which is
given by the angular components of the Laplacian in spheri-
cal coordinates. The eigenfunctions of this operator are the
well-known spherical harmonics Yl,n�� ,��. Then the shear
eigenfunctions of the membrane are ��x� ;s�=Yl,n�� ,�� and
these satisfy the equation

���x� ;s� = −
l�l + 1�

R2 ��x� ;s� . �24�

From Eq. �14�, we find that the eigenvalues �l, indexed by
the angular momentum l, are

�l =
�m

R2 �2 − l�l + 1�� , �25�

and the membrane velocity field Eq. �12� expanded in terms
of these eigenfunctions is

v���,�� = �
l,n

Al,n��D
��Yl,n��,��� , �26�

where the sums over the angular momentum and azimuthal
indices l ,n take the usual form: �l,n	�l=1

� �n=−l
l . The l=0

term does not contribute to this expression, since the spheri-
cal harmonic Y0,0 is a constant, so we can exclude it from
these sums.

B. Solution to the 3D Stokes equation

The general solution to the 3D Stokes equation �15� in
spherical coordinates can be divided into two parts. The first
part v�− is finite at the origin, and thus is suitable for the fluid
velocity in the interior of the membrane. This solution can be
written as v�−=�l=1

� v� l
−, where �35�

v� l
−�r,�,�� = �� � �r�ql

−� + �� wl
−

+
1

�−�l + 1��2l + 3��1

2
�l + 3�r2�� pl

− − lr�pl
− .

�27�

The pressure of the fluid inside the sphere p−=�lpl
−, so we

can see that the final term in this equation is the particular
solution to Eq. �15�, while the first two terms are the homo-
geneous solution. The harmonic functions ql

− ,wl
−, and pl

− sat-
isfy Laplace’s equation, �� 2�l

−�r ,� ,��=0 and must remain
finite at the origin r=0,
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�l
−�r,�,�� = �

n=−l

l

�l,n
− rlYl,n��,�� . �28�

An arbitrary harmonic function �−�r ,� ,�� inside the sphere
can be written as a linear combination of the functions
�l

−�r ,� ,��.
The second part of the solution to the 3D Stokes equation

�15� in spherical coordinates v�+ decays to zero as r→�, and
thus is suitable for the fluid velocity outside of the membrane
given the boundary condition at infinity. This solution can be
written as v�+=�l=1

� v� l
+, where the velocity field v� l

+ is given by
Eq. �27� with the replacements l→−l−1 and �−→�+ in the
coefficients of Eq. �27�. Similarly, any harmonic function
�l

+�r ,� ,�� outside the sphere is given by Eq. �28� with the
replacement rl→r−l−1.

In order to enforce the boundary conditions on the surface
of the membrane, which have been written in covariant form
�see Sec. III�, it is convenient to write the bulk fluid velocity
components Eq. �27� in covariant form as well,

v� l,r
− �r,�,�� =

l

r
wl

− +
lr

2�−�2l + 3�
pl

−, �29�

vl,�
− �r,�,�� = rR��D�ql

− + D�wl
− +

l + 3

2�−�l + 1��2l + 3�
r2D�pl

−.

�30�

In these equations, the asymmetric tensor �� and the cova-
riant derivative D� are defined on the sphere. That is, all
radial distances in these quantities are set equal to the sphere
radius R. Again, we simply make the substitutions l→−l
−1, �−→�+ in the coefficients for the covariant velocity
components v� l,r

+ and v� l,�
+ outside of the sphere.

C. Point-force response of the combined membrane/embedding
fluids system

The membrane is coupled to the embedding fluids via the
stick boundary conditions Eqs. �17� and �18� and the stress-
balance condition Eq. �21� on the surface of the sphere. Us-
ing the normal coordinates for the sphere, given by
�u1 ,u2 ,u3�= �� ,� ,r−R�, along with Eqs. �24� and �26�, the
stick boundary conditions can be written as

vr
��R,�,�� = 0, D�v�

��R,�,�� = 0, �31�

��D�v�
��R,�,�� = − �

l,n

l�l + 1�
R2 Al,nYl,n��,�� . �32�

From Eqs. �29� and �30�, we see that Eq. �31� causes wl
�

= pl
�=0. This implies that shear flows in a spherical mem-

brane do not alter the pressures in the embedding fluids,
p��r ,� ,��=0. This is also the case for flat membranes �13�.

If we denote the covariant components of the fluid veloc-
ity at all points in space as vi�r ,� ,��,

vi�r,�,�� = �vi
−�r,�,�� r � R

vi��,�� r = R

vi
+�r,�,�� r � R

� , �33�

then we can show using Eq. �32� that

vi�r,�,�� = 	�i
��

l,n
gl�r�Al,n��D�Yl,n��,�� , �34�

where 	�i
� is the in-plane projection operator and

gl�r� = ��
r

R
�l+1

r � R

�R

r
�l

r � R� . �35�

We now turn to the stress balance condition. Using Eqs. �20�
and �34�, we can compute the stresses acting on the mem-
brane due to the embedding fluids inside �−� and outside �+�
the spherical membrane. The stress due to the interior fluid is
given by ��r

− ,

��r
− �u3=0 =

�−

R
�
l,n

�l − 1�Al,n��D�Yl,n��,�� . �36�

The stress due to the exterior fluid ��r
+ �u3=0 can be found

using the same substitution pattern given above, which
causes �−�l−1�→−�+�l+2� in this equation.

Using Eqs. �24� and �36�, the stress boundary condition
Eq. �21� becomes

��D���
ext =

�m

R4 �
l,n

l�l + 1�slAl,nYl,n��,�� , �37�

where

sl = l�l + 1� − 2 +
R

�−
�l − 1� +

R

�+
�l + 2� . �38�

We have defined two Saffman-Delbrück lengths ��
	�m /�� for each embedding fluid in a manner analogous to
the original SD length �0	� / ��++�−� introduced for the
case of a flat membrane �12�.

It now remains only to add the external force applied to
the particle in the membrane to generate flows in the mem-
brane �and in the embedding fluids�. Using the completeness
of the spherical harmonics, this external stress can be written
as

��
ext =

F0,�

R2 �
l=0

�

�
n=−l

l

Yl,n��,��Yl,n
� ��0,�0� . �39�

Solving for the unknown coefficients Al,n in Eq. �37� using
the orthonormality of the spherical harmonics completes our
solution. We find

Al,n =
R2

�msll�l + 1�
���F0,�D�Yl,n

� ��,������0,�0�. �40�
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Using the fact that the covariant derivative of a scalar func-
tion is identical to a partial derivative, D�f =��f , it is
straightforward to show from Eqs. �34� and �40� that the

physical vector components of the fluid velocity at the point
�� ,�� due to the force applied at the point ��0 ,�0� are given
by v��r ,� ,�� · r̂=0 and

v��r,�,�� · �̂ = �
l=1

�
�2l + 1�gl�r�

4��msll�l + 1�
��F� 0 · �̂0�csc � csc �0����0

Pl�cos �� − �F� 0 · �̂0�csc �����0
Pl�cos ��� , �41�

v��r,�,�� · �̂ = �
l=1

�
�2l + 1�gl�r�

4��msll�l + 1�
�− �F� 0 · �̂0�csc �0����0

Pl�cos �� + �F� 0 · �̂0�����0
Pl�cos ��� . �42�

The Legendre functions Pl�x� arise from using the addition
theorem for spherical harmonics to perform the sums over n
in Eq. �34�. Finally, � is the angle between the points �� ,��
and ��0 ,�0�.

For a single point force acting on the membrane, we can
place the point force at the north pole and choose F� 0=Fnpŷ
without loss of generality. Then, Eqs. �41� and �42� become

v�np�r,�,�� = − Fnp�sin � csc �S1
+�r,cos ���̂

+ cos ��cot �S1
+�r,cos �� + S2

+�r,cos ����̂� ,

�43�

where the sums Sn
��r ,x� are defined as

Sn
��r,x� 	

1

4��m
�
l=1

�
2l + 1

l�l + 1�
��1�l+1

sl
gl�r�Pl

n�x� . �44�

Figure 1 shows the fluid velocity field on a membrane im-
mersed in a symmetric embedding fluid environment �i.e.,
�+=�−� in response to a point force for a varying values of
the dimensionless ratio R /�0. In each case, we can see a
single vortex in the fluid velocity along the line of longitude
perpendicular to the force at the north pole; an identical vor-
tex is placed symmetrically on the back side of the sphere

�not shown�. These two vortices in the membrane fluid ve-
locity are required by the topological constraints placed on
all vector fields on a sphere �20�. For large spheres, the vor-
tices sit near the north pole, and the fluid velocity is vanish-
ingly small far from the north pole �for clarity, we have
scaled the magnitude of the vectors in Fig. 1 to ensure that
the vectors are visible�. As we will show below, a particle at
the north pole subject to such a force would move through
the membrane with a mobility close to that of the corre-
sponding flat membrane. As the radius of the sphere de-
creases, the magnitude of the membrane fluid velocity in-
creases dramatically, and the vortices migrate to the equator.
In this limit, Fig. 1�c� shows that the membrane fluid veloc-
ity field approaches that of the uniform rotational motion of
a rigid sphere. Indeed, we can show from Eq. �43� that the
interior fluid and membrane rotate together as a rigid object
when the membrane radius is small. From Eq. �38�,

s1
−1

sl
−1 �

�+

R
l2 + l��+

�−
+ 1� for l � 1. �45�

When R /�+�1, this ratio is large and the l=1 term will
dominate the sums in Eq. �43� as long as �− /�+ is not very
small. Then, the velocity of the membrane and interior fluid
are approximately given by

(a)

R = 1

(b)

R = 0.1

(c)

R = 10

FIG. 1. �Color online� Membrane fluid velocity for a spherical membrane immersed in a symmetric embedding fluid environment ��+

=�−� due to a force F� 0=Fnpŷ at the north pole, for decreasing values of R /�0. The magnitudes of the velocity vectors in each plot are scaled
by following scale factors: �a� 15; �b� 2; and �c� 1

2 .
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lim
R/�+→0

v�np�r,�,�� =
Fnp�x̂ � r��
8��+R2 , for r � R . �46�

This is precisely the velocity of a rigid sphere rotating about
the x̂ axis. Thus, in the limit R /�+�1, the applied point force
causes the entire sphere to rotate, rather than dragging the
particle through the membrane. Because of the high curva-
ture of the membrane, the energy needed to establish the
velocity gradients required to move the particle within the
membrane becomes prohibitively large. As a result, the force
on the north pole causes the entire membrane to rotate rig-
idly, which dissipates much less energy.

D. Particle mobility

As defined in Sec. III, the particle mobility follows from
the membrane velocity at the location of the particle. From
Eq. �43�, we find �38�

lim
�→0

v�np��,�� = Fnpŷ�
l=1

lmax �2l + 1�
8��msl

	 Fnpŷ�
l=1

lmax

Sl. �47�

As required by the structure of the two-dimensional Green’s
function discussed above, the summand in Eq. �47� �1 / l for
l�1, so the sum possesses a short-distance logarithmic di-
vergence that is cut off by the particle size a. This introduces
a high-wave-number cutoff lmax�1 /a to the sum in Eq. �47�;
we will determine the precise value of lmax below.

We have seen that a force on an isolated spherical mem-
brane can give rise to a rigid rotation of the membrane when
the radius R is small. This result indicates that the definition
of the particle’s mobility in the spherical membrane is am-
biguous. In response to an applied point force, the membrane
picks up a rigid body rotation. Clearly the particle’s motion
due to this global rotation should not contribute to the defi-
nition of its mobility, which concerns the motion of the par-
ticle within the fluid membrane. However, there are multiple
ways to remove that rotation, and each choice generates a
slightly different definition of the particle mobility. This is-
sue does not arise for the infinite flat membrane because the
membrane velocity field decays sufficiently rapidly at long
distance, so that one may conclude that the membrane re-
mains globally at rest. We expect the ambiguity discussed
here in terms of the spherical membrane to apply to any
compact membrane that has a finite area. To better illustrate
the range of choices for the particulate mobility, we discuss
three different choices below. For the free mobility, we allow
the membrane’s global rotation and include the contribution
of this motion in the particle’s mobility. A more reasonable
definition may be found by considering the particle’s mobil-
ity in a pinned membrane, where a constraint force is applied
at the antipode of the particle �i.e., south pole� and sets the
membrane velocity to zero there. This definition is appropri-
ate for studying particle mobilities on a sphere �e.g., a giant
unilamellar vesicle or fluid droplet� that rests on a support
such as a glass coverslip. Finally, one may define a mobility
in which the particle’s velocity is computed in the reference
frame that is co-rotating with the rigid body motion of the
spherical membrane. This amounts to simply subtracting off

the �=1 contribution to the sum in the particle’s velocity.
The free mobility is defined by the equation

lim
�→0

v�np��,�� = �freeF� np, ⇒ �free = �
l=1

lmax �2l + 1�
8��msl

. �48�

The final equality follows from Eq. �47�. This result depends
on the unknown cutoff parameter lmax. To determine a value
for lmax, we insist that the mobility of a small particle �a
��0� in a spherical membrane reduces to that of a flat mem-
brane in the limit of an arbitrarily large sphere, R→�. The
mobility of a such a particle embedded in a flat membrane is
given by �12,13�

�flat =
1

4��m
�ln�2�0

a
� − � , �49�

where � is Euler’s constant. To obtain the flat-space limit of
Eq. �48� we define a wave number q	 l /R and convert the
sum to an integral. Performing the integral we obtain

lim
R→�

�free = ln�1 +
lmax�0

R
 , �50�

from which we set

lmax =
2R

a
e−�, �51�

so that Eq. �50� is consistent with Eq. �49� to leading order in
�0 /a.

In the opposite limit of a small spherical membrane,
R /�+�1, the l=1 term in the mobility Eq. �48� dominates. In
this limit, we still take a to be the smallest length in the
problem, so lmax�R /a is still very large and we cannot sim-
ply discard the l�1 terms in �free. For these terms, we ap-
proximate sl� l�l+1�−2; to leading order in lmax, we find

lim
R/�+→0

�free =
1

8��+R
+

1

4��m
�ln�2R

a
� −

11

12
 . �52�

The first term is the l=1 term, which is given precisely by
the rotational mobility of a solid sphere, as expected; the
second term arises from the l�1 terms. The dominance of
the l=1 term in the sum demonstrates that the particle’s mo-
bility mainly reflects the rigid body rotation of the sphere,
plus logarithmic corrections.

One way to eliminate the rigid rotation of the sphere is to
introduce a pinning force on the membrane that prevents
such a motion. In order to minimize the effect of this pinning
force on the nonrotational contributions to the particle mo-
bility, we place the pinning force at the south pole of the
membrane. The pinning force acts as a constraint fixing the
membrane velocity to be zero at the south pole. The calcu-
lation of the membrane velocity field in response to the com-
bination of the applied force at the north pole �i.e., the par-
ticle� and the constraint �pinning� force at the south pole
presents no new difficulties. Due to the linearity of the equa-
tions in velocity, the effects of the two forces simply add. In
addition to preventing the rotation of the membrane, this
pinning force approximates the configuration of the experi-
ments in Ref. �8�. The rigid rotation of the sphere due to a
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force in the +ŷ direction at the north pole generates a veloc-
ity in the −ŷ direction at the south pole, so the pinning force
must point in the +ŷ direction. These two forces produce
oppositely directed torques about the center of the sphere,
but seemingly act in concert to translate it in the +ŷ direc-
tion. However, this translational motion is prevented by our
choice of boundary conditions. Using Eqs. �41� and �42�, we
find that the velocity v�sp due to the force at the south pole is

v�sp�r,�,�� = Fsp sin � csc �S1
−�r,cos ���̂

+ Fsp cos ��cot �S1
−�r,cos �� + S2

−�r,cos ����̂ ,

�53�

Using linear superposition, the total velocity for the pinned
membrane is

v�pin�r,�,�� = v�np�r,�,�� + v�sp�r,�,�� . �54�

The magnitude of the pinning force Fsp is set by the con-
straint that the membrane velocity vanish at the south pole.
We find that the pinning force at the south pole is propor-
tional to the applied force on the particle, Fsp=

Spin

�free
Fnp, where

Spin 	 �
l=1

lmax �− 1�l+1�2l + 1�
8��msl

. �55�

Then, the mobility �pin of the particle at the north pole of a
pinned spherical membrane is given by

�pin = �free�1 − � Spin

�free
�2 . �56�

As one might expect, �pin��free generally. In addition, in
the flat-membrane limit, R→�, the correction to �pin due to
the rigid rotation of the sphere vanishes, so that �pin��free
→�flat. More interestingly, in the limit of small spheres,
R /�+�1, the rigid rotation term that dominates the free mo-
bility result is absent from �pin. To determine the asymptotic
behavior of �pin in this limit, we use Eq. �52� and approxi-
mate sl� l�l+1�−2 in Spin, as we did for �free. To O�� R

a �0�,

lim
R/�+→0

�pin =
1

2��m
�ln�2R

a
� −

1

2
 . �57�

The pinned membrane mobility is perhaps most relevant to
the commonly encountered experimental system of a sup-
ported droplet, but it also appears to be a somewhat arbitrary
definition and has the disadvantage that the mobility of a
particle on a ostensively uniform membrane becomes a func-
tion of position. We have considered only the case in which
the pinning is applied antipodally; a spectrum of mobility
results can be obtained by changing the separation between
the particle and the pinning site. To eliminate this effect, we
can define a co-rotating mobility in which we subtract the
rigid body rotation by determining the resultant particle ve-
locity in a frame co-rotating with the rigid body motion of
the membrane. This amounts to simply dropping the term in
the mobility that corresponds to the rigid rotation of the
sphere, i.e., the l=1 term. Then, we find

�corot = �
l=2

lmax 2l + 1

8��msl
. �58�

Once again, in the flat-space limit R→�, �corot��free
→�flat. The small sphere �R /�+�1� behavior of �corot fol-
lows directly from Eq. �52�:

lim
R/�+→0

�corot =
1

4��m
�ln�2R

a
� −

11

12
 . �59�

For both of these particle mobilities, we can see that for
highly curved membranes R /�+�1, the long-distance cutoff
to the logarithmic divergence in the mobility is the mem-
brane radius R, rather than the Saffman-Delbrück length �0
that appears in the flat membrane mobility Eq. �49� �19�. We
expect that particle mobilities are generically suppressed by
curvature whenever the radius of curvature becomes smaller
than the SD length. Although the appearance of R as the
long-distance cutoff is generically expected, the prefactor
clearly depends on the definition of mobility used, or equiva-
lently the way in which the mobility is experimentally mea-
sured.

In Figs. 2�a�–2�c�, we plot the free mobility �free, the
mobility in a pinned membrane �pin, and the co-rotating mo-
bility �corot, respectively, as a function of the ratio R /�+ for a
variety of internal viscosities �i.e., values of �−; see caption�.
All of the mobilities approach their flat-space limits when
R /�+�1. They also approach the expected asymptotic re-
sults in the limit R /�+�1, Eqs. �52�, �57�, and �59� for Figs.
2�a�–2�c�, respectively.

At intermediate curvatures, we can see that the asymme-
try between the interior and exterior fluid viscosities influ-
ences the behavior of the particle mobility as it approaches
the flat-space limit. When the more viscous fluid is bounded
by the spherical membrane, i.e., �+ /�−�1 �green �gray�
curves�, it dissipates less energy than in the flat case, where it
is unbounded. As a result, the mobility in the spherical mem-
brane is larger than in the flat membrane, so the approach to
the flat-space limit is from above. Conversely, when �+ /�−
�1 �dotted curves�, the mobility is suppressed relative to
that of the flat membrane. We note that the behavior of �pin
is markedly different that of �corot at intermediate curvatures.
In particular, �pin has a strongly nonmonotonic behavior at
intermediate curvatures, whereas �corot is essentially always
a monotonically decreasing function of R /�+, only display-
ing a weak nonmonotonic behavior for �+��− �due to the
asymmetry effect described above�. This difference is caused
by the different ways in which the effect of the membrane’s
rigid rotation is removed from these mobilities. For �corot,
the rotational motion is excluded from the mobility for all
membrane curvatures, whereas for �pin this motion is only
completely removed for membranes with high curvatures. As
a result, the rotational motion—which leads to an increase in
the mobility as R decreases �see Fig. 2�a��—does contribute
to �pin for intermediate curvatures, causing it to increase as R
decreases for intermediate values of R /�+, as seen in Fig.
2�b�.
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V. CYLINDRICAL MEMBRANE

In this section, we turn to the case of a cylindrical mem-
brane of radius R. The organization of this section follows
that of the previous one. First, we find the shear modes of the
membrane. We then give the solution to the Stokes equation
for the embedding fluids inside and outside the cylinder. Us-
ing these results, we determine the response of the
membrane/embedding fluids system to an in-plane point
force in the membrane and investigate the membrane flows
and the particle mobility in detail.

A. Membrane modes

For a cylinder of radius R, the Gaussian curvature van-
ishes, K=0. Equation �8� then states that the covariant de-
rivatives commute. In fact they are equal to the usual partial
derivatives, D�=��. Choosing ẑ to be parallel to the cylinder
axis, the eigenfunctions of the Laplacian are simply the Fou-

rier modes ein�+iqz. The periodicity of the angular variable
requires that n be restricted to the integers. From Eq. �14�,
the eigenfunctions and eigenvalues for the shear modes of
the cylinder are

��x� ;�� = exp�ei��x��, ���� = − �m���
�, �60�

where the covariant vector �� is defined as

�� = n, �z = q, ⇒ ���
� = �q2 +

n2

R2 �61�

The general membrane velocity field Eq. �12� is thus

v���,z� = i��� d�A�����ei��x�, �62�

where

� d� 	 �
n=−�

� �
−�

�

dq . �63�

B. Solution to the 3D Stokes equation

The solution to the Stokes equation �15� in cylindrical
coordinates can be written as �35�

v���r,�,z� = �� f��r,�,z� + �� � �g�r,�,z�ẑ�

+ r�r��� h��r,�,z�� + �zh
��r,�,z�ẑ , �64�

p��r,�,z� = − 2���z
2h��r,�,z� , �65�

where f��r ,� ,z�, g��r ,� ,z�, and h��r ,� ,z� are harmonic
functions in cylindrical coordinates. Motivated by the form
of the membrane velocity Eq. �62�, we write a harmonic
function ��r ,� ,z� in cylindrical coordinates as

��r,�,z� = ei��x���r� . �66�

Then, it is straightforward to show that Laplace’s equation
�� 2�=0 becomes the modified Bessel’s equation for ��r�,
whose homogeneous solutions are the modified Bessel func-
tions of the first and second kind, Kn�qr� and In�qr�, respec-
tively. Since limx→0 Kn�x�=limx→� In�x�=�, the functions
Kn�qr� are the appropriate solutions for the exterior embed-
ding fluid, while the functions In�qr� are the appropriate so-
lutions for the interior one. Thus, we can write

���r,�,z� =� d�ei��x�������n
��qr� , �67�

where

�n
+�qr� 	 Kn��q�r�, �n

−�qr� 	 In��q�r� . �68�

Here, the absolute values are needed to ensure the reality of
the harmonic functions.

As in the case of spherical membranes, the boundary con-
ditions at the membrane surface are most easily enforced
using covariant notation. If we write the covariant velocity
components as
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FIG. 2. �Color online� Dimensionless mobilities of a pointlike
particle embedded in a sphere as a function of the ratio R /�+ for
�+ /a=103 and �−=0.1�+ �green �gray� curves�, �−=�+ �black
curves�, and �−=10�+ �dotted curves�. The dot-dashed curves are
the appropriate analytic expressions for the mobilities in the limit
R /�+→0 �see text�; the dashed curves are the flat-space limits, Eq.
�49�. �a� “Free” mobility �free; �b� mobility in a pinned membrane
�pin; and �c� mobility in the co-rotating frame of reference, �corot.
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vi
��r,�,z� =� d�ei��x�wi

���,r� , �69�

then using Eq. �64�,

wr
���,r� = �q��̃n

��qr�F���� +
in

r
�n
��qr�G����

+ H�����− �q��̃n
��qr� + r�q2 +

n2

r2 ��n
��qr� ,

�70�

w�
���,r� = im�n

��qr�F���� − �q�r�̃n
��qr�G����

+ inH������q�r�̃n
��qr� − �n

��qr�� , �71�

wz
���,r� = iq�n

��qr�F���� + iqH������q�r�̃n
��qr� + �n

��qr�� .

�72�

Here, F����, G����, and H���� are the coefficients of the
harmonic functions f��r ,� ,z�, g��r ,� ,z�, and h��r ,� ,z�, re-
spectively �see Eq. �67��, and

�̃+�qr� 	�dKn�u�
du

�
u=�q�r

, �̃−�qr� 	�dIn�u�
du

�
u=�q�r

. �73�

C. Point-force response of the combined membrane/
embedding fluids system

We now couple the membrane flows to the flows in the
embedding fluids using the stick boundary conditions, Eqs.

�17� and �18�, and the stress-balance condition Eq. �21�. We
begin with the stick boundary conditions. Using Eq. �69�,
Eqs. �17� and �18� become, respectively,

wr
���,R� = 0, ��w�

���,R� = 0, �74�

i����w�
���,R� = − ���

�A��� . �75�

Applying Eqs. �70�–�72�, these boundary conditions become
a system of six linear equations relating the coefficients F�,
G�, and H� to the membrane shear mode amplitudes A. In
the case of a spherical membrane, the rotational symmetry
between the in-plane coordinates � and � and the simple
power-law dependence of the harmonic functions Eq. �28� on
the out-of-plane coordinate r greatly simplified the solution
of the analogous boundary conditions. For the cylinder, the
solutions of Eqs. �74� and �75�, although straightforward to
obtain, are complex and unilluminating; we forgo writing
these expressions here.

Using Eqs. �70�–�72�, we can compute the terms in the
stress-balance condition Eq. �21� due to the flows in the em-
bedding fluids in terms of the coefficients F�, G�, and H�.
From the stick boundary conditions Eqs. �74� and �75�, we
find after some algebra that

��D���r
� �r=R = − ��� D�ei��x�A���

R3 C���� , �76�

with

C���� = Cn
��k� =

2n2�������3 + �n2 + k2�2�������2 + 2������k4 − n4� − �k2 + n2�3

�����k2 − ������ − n������� + n������� + 2�
, �77�

and where we have defined

k 	 qR . ����� 	
�k��̃n

��k�
�n
��k�

. �78�

The stress due to the externally applied in-plane point force
F� 0 acting at the point ��0 ,z0� in the membrane can be written
as

��
ext =

F0,�

4�2R
� D� exp�i��x� − i�n�0 + qz0�� . �79�

From Eqs. �76� and �79�, we solve the stress-balance condi-
tion Eq. �21� to determine the amplitudes A���=An�k� of the
membrane shear modes generated by the applied force. We
find

An�k� = −
iR2e−i�n�0+k
0�

4�2�mcn�k�
�k�F� 0 · �̂0� − n�F� 0 · ẑ�� , �80�

where 
	z /R and

cn�k� 	 �k2 + n2�2 +
R

�+
Cn

+�k� −
R

�−
Cn

−�k� . �81�

From these amplitudes, the membrane velocity field is found
to be

v���,
� = �F� 0 · �̂0�� 1���,�
��̂ −  0���,�
�ẑ�

+ �F� 0 · ẑ�� −1���,�
�ẑ −  0���,�
��̂� , �82�

where ��=�−�0, �
=
−
0, and
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 p��,
� =
1

4�2�m
�

n=−�

� �
−�

�

dk
k1+pn1−p

cn�k�
ein�+ik
. �83�

Figures 3�a� and 3�b� show the membrane velocity fields on
a cylinder in a symmetric fluid environment subject to a

force applied at ��0 ,z0�= �0,0� in the �̂ and ẑ directions, re-
spectively, at both high and low values of the membrane

curvature. For a force in the �̂ direction, the velocity magni-
tude increases dramatically as the membrane radius is de-
creased. For a force in the ẑ direction, the effect of curvature
is much weaker. This can be seen in the scaling factors cho-
sen for the velocity vectors in Fig. 3: the scaling factor is 10
times larger for R /�0=0.01 than it is for R /�0=1 in Fig. 3�a�;
by contrast, the scales in these two cases in Fig. 3�b� are the
same. In addition, we can see in Fig. 3�c� that in the limit
R /�−�1 the velocity field decays much more slowly away

from the particle for a force in the �̂ direction that it does for
a force in the ẑ direction.

We have seen in the previous section that a point force on
a spherical membrane causes the membrane and interior fluid
to rotate rigidly when the curvature is high. Such rigid rota-
tional motion is impossible in response to a point force on an
infinite cylinder: for any finite point force, the membrane
velocity field must decay sufficiently rapidly at large dis-
tances from the point where the force is applied. However,
we can show analytically that in the limit R /�−�1 a force in

the �̂ direction can cause a flow that locally corresponds to a
rigid rotation of the cylinder. That is, the membrane velocity
becomes roughly independent of the polar angle � but still
decays along the cylinder axis. A force in the ẑ direction does
not induce such rotational motion for any value of R, so the
membrane velocity field always exhibits a strong
�-dependence. The local rigid rotation of the cylinder dissi-
pates much less energy in the membrane and interior fluids,
just as the complete rigid rotation of the spherical membrane
and interior fluid causes no dissipation in these fluids. As a
result, the magnitude of the membrane velocity induced by a

force in the �̂ direction increases when the cylinder radius is
very small, and this velocity decays much more slowly away
from the particle than the velocity induced by a force in the
ẑ direction on the same membrane. This is precisely the be-
havior seen in Fig. 3.

In the small R limit, we can use the asymptotic behavior
of Eq. �81� to determine the membrane velocity. Using the
properties of modified Bessel functions, it is straightforward
to show that the appropriate definition of the small radius
condition for the cylinder is R /�−→0, and that

lim
R/�−→0

cn�k� = �k4 + 2k2R/�− n = 0

�k2 + n2�2 n ! 1
� . �84�

By contrast, the appropriate definition of the small radius
condition for the sphere is R /�+→0. This difference reflects
that fact that, at high curvature, the fluid inside the sphere
rotates rigidly and thus dissipates no energy, whereas for the
cylinder energy dissipation by the interior fluid dominates in
this limit.

For a force in the �̂ direction, the n=0 term dominates the
sum over n in Eq. �82�. We can see immediately from Eq.
�83� that this term is independent of �. This is precisely the
locally rigid rotational motion described above. For �z� /R
�1 we find that the velocity field decays exponentially along
the cylinder. To leading order in �z� /R,

lim
R/�−→0

v���,z� �
F��̂

4��m

 �−

2R
exp�−

�z�
2

�−R

 , �85�

In contrast, for a force along the ẑ direction, the n=0 terms
vanish and the velocity field still displays a strong angular
dependence in this limit

lim
R/�−→0

v���,z� �
Fze

−�z�/R

4��mR
��z�cos �ẑ + z sin ��̂� . �86�

We can also see that the decay length Ld for the membrane

velocity induced by the force in the �̂ direction �Ld=
R�−� is
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FIG. 3. �Color online� Membrane fluid velocity for a cylindrical membrane immersed in a symmetric external fluid environment ��+

=�−� due to a force �a� F� 0=F0�̂0 and �b� F� 0=F0ẑ at the origin, for R /�0=0.01 and 1. The magnitudes of the velocity vectors in the plot for

F� 0=F0�̂, R /�0=0.01 are scaled by a factor of 0.1 relative to the other plots. In addition, the region of the cylinder pictured for each cases
is variable; the length of the cylinder is indicated next to each figure. �c� Detail of the velocity magnitudes along the line �=0, 
�0 for the

velocities for R /�0=0.01. The points are the exact numerical solutions for F� 0=F0�̂0 �squares� and F� 0=F0ẑ �circles�; the solid curves are the
analytic expressions, Eq. �85� �green �gray� curve� and Eq. �86� �black curve�, respectively.
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much larger than that of the force in the ẑ direction �Ld=R�.
These expressions agree very well with the numeric results;
see Fig. 3�c�.

D. Particle mobility

The cylinder breaks the in-plane rotational symmetry of
the membrane, leading to a nontrivial mobility tensor. This
tensor can be completely characterized by two scalar quan-
tities: �z and ��, the mobilities in response to forces directed

along the ẑ and �̂ directions, respectively. The simplest defi-
nition of these mobilities follows from the membrane veloc-
ity for a “free” membrane, Eq. �82�, as is standard in the
consideration of mobilities in a flat membrane of infinite
extent. These definitions include any contributions from the
local rotational motion of the membrane. As discussed
above, such a rotation does not occur in response to a force
along the ẑ direction. As a result, the mobility along the
cylinder axis that follows from Eq. �82� is the only mobility
definition needed for motion in this direction, so we denote

this mobility �z. For a force in the �̂ direction, one can in-
troduce alternate definitions of the mobility that eliminate the
effect of local rigid rotations in a manner analogous to that
discussed for the case of the spherical membrane.

The two independent mobilities for a free cylindrical
membrane �z and ��,free can be found from Eq. �82�. In
particular, the velocity of a particle in a free cylindrical
membrane in response to a force F� 0 is given by

v���0,z0� 	 �F� 0 · ẑ��zẑ + �F� 0 · �̂0���,free�̂ , �87�

where

�z =
1

4�2�m
�

n=−N

N �
−K

K

dk
n2

cn�k�
, �88�

��,free =
1

4�2�m
�

n=−N

N �
−K

K

dk
k2

cn�k�
. �89�

As with the spherical membrane, we choose the cutoffs N
and K so as to reproduce the correct flat-space limit of the
mobility. In this limit, we define the two-dimensional wave
number q̃1	k /R, q̃2	n /R. The sum on n becomes an inte-
gral over q̃2,

�
n=−N

N �
−K

K

dk → R2�
−K/R

K/R

dq̃1�
−N/R

N/R

dq̃2. �90�

Using the properties of modified Bessel functions, one can
show that

lim
R→�

cn�k� = R4q̃3�q̃ +
1

�0
 . �91�

The two mobilities Eqs. �88� and �89� must become identical
in the large R limit, so we must set K=N. Then, it is straight-
forward to show that

4��m lim
R→�

� �z

��,free
� = ln�2 +

2K�0

R
� −

2C

�
, �92�

where C is Catalan’s constant. If we set K= R
a exp� 2C

� −��, we
obtain the necessary agreement with the SD result for the flat
membrane, Eq. �49�, to leading order in �0 /a.

We now turn to the more interesting limit of high curva-
ture: R /�−→0. Using Eq. �84� to evaluate the integrals and
sums in Eqs. �88� and �89�, we find, to O�� R

a �0�,

lim
R/�−→0

�z =
1

4��m
�ln�R

a
� +

1

2
 , �93�

lim
R/�−→0

��,free =
1

4��m
�
 �−

2R
+ ln�R

a
� −

1

2
 . �94�

In this limit of high curvature, the mobility tensor becomes
strongly anisotropic. As expected, the force parallel to the
long axis of the cylinder does not cause the membrane to
rotate, so the mobility �z is logarithmically suppressed as
R /�−→0. By contrast, the mobility is direction perpendicu-
lar to this long axis diverges as R−1/2. This divergence is
much slower than the R−1 divergence found in the case of a
free spherical membrane because the rotational motion in the
cylinder is local: dissipative shear stresses are still set up in
the interior fluid and in the membrane in this limit, unlike the
global rigid rotation seen for the spherical membrane. This
also explains why the leading order term in Eq. �94� depends
on the membrane and interior fluid viscosities, whereas the
leading order term in Eq. �52� is independent of these quan-
tities.

In order to eliminate the contribution of the local rigid
rotation of the membrane to the mobility ��, we can use a
pinning force to prevent this rotational motion, as we did for
the spherical membrane. In particular, we examine the mo-
bility of a particle placed at ��0 ,z0�= �0,0� in a membrane
pinned on its opposite side, �pin=�. One may imagine either
that this pinning force acts along the line of contact between
the cylinder and a supporting plane or that the pinning force
acts only at one point directly below the particle. We choose
the latter case here, but the former is equally possible to
analyze by considering the effect of a line of regularly
spaced pinning forces along the bottom of the cylinder. In the
limit that this spacing is small compared to the two SD
lengths, this calculation will determine the effect of a pinning
contact line. Instead, we apply a single pointlike force F� 0

=Fpin�̂pin=−Fpinŷ at the point ��pin ,zpin�= �� ,0�. From Eq.
�82�, we calculate the total velocity field v�pin in response to
these two forces,

v�pin��,
� =
1

4�2�m
�

n=−�

� �
−�

�

dk
ein�+ik


cn�k�

��F0 − �− 1�nFpin��k2�̂ − kmẑ� . �95�

Setting the magnitude Fpin of the pinning force by requiring
the total velocity vanish at the point ��pin ,zpin�, we find
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Fpin =
P

��,free
F0, �96�

where

P 	
1

4�2�m
�

n=−�

� �
−�

� k2dk

cn�k�
. �97�

The particle’s mobility in the pinned membrane is

��,pin = ��,free�1 − � P

��,free
�2 . �98�

As with the spherical membrane, the pinning force �i.e., the
sum P� vanishes in the flat-space limit R→�, and ��,pin
→�flat. In the limit R /�−→0, we use Eq. �84� to determine
P to O�� R

a �0�,

lim
R/�−→0

P =
1

4��m
�
 �−

2R
− ln�R

a
� . �99�

Combining this result with the free membrane mobility
shown in Eq. �94�, we find that the particle’s mobility in the
pinned membrane can be written as

lim
R/�−→0

��,pin =
1

2��m
�ln�2R

a
� −

1

2


��1 −
ln� 2R

a � − 1
2


2�−

R + 2 ln�R
a � − 1

� , �100�

Here, the second term in brackets is the next-to-leading-order
contribution to the mobility. For the spherical membrane,
this term was O�R /�+� and thus negligible. In this case,
however, the next-to-leading-order contribution is much
larger—O�
R /�−�—and must be kept in order to obtain
good agreement with the numerical results.

Again in partial analogy to the case of the spherical mem-
brane, we can define another mobility ��,corot in a frame that
is co-rotating with the locally defined rigid body motion of
the cylinder. This amounts to dropping the n=0 from Eq.
�89�,

��,corot =
1

2�2�m
�
n=1

N �
−K

K

dk
k2

cn�k�
. �101�

Returning to the flat-space limit R→�, the term correspond-
ing to the local rotation becomes insignificant, so ��,corot
→�flat. In the limit R /�−→0, however, we find from Eq.
�94� that the mobility in the co-rotating frame now vanishes
logarithmically as it did for the sphere,
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FIG. 4. �Color online� Dimensionless mobilities of a pointlike particle embedded in a cylindrical membrane as a function of the ratio
R /�− for �− /a=4�103 and �+=0.1�− �green �gray� curves�, �+=�− �black curves�, and �+=10�− �dotted curves�. The dot-dashed curves are
the analytic expressions for the mobilities in the limit R /�+→0 �see text�; the dashed curves are the flat-space limits, Eq. �49�. �a� Mobility

�z for a particle subject to a force in the ẑ direction. �b�, �c�, and �d� Mobilities for a particle subject to a force in the �̂ direction: �b� in a
“free” membrane; �c� in a pinned membrane; �d� in a locally co-rotating frame of reference.
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lim
R/�−→0

��,corot =
1

4��m
�ln�R

a
� −

1

2
 . �102�

In Fig. 4, we plot the various mobilities for a pointlike par-
ticle embedded in a cylindrical membrane as a function of
the dimensionless parameter R /�−, for various values of the
viscosity of the external embedding fluid, i.e., �+. We can see
that in all cases, the mobilities approach the flat-membrane
mobility Eq. �49� for large R /�−. In addition, the mobilities
display the expected asymptotic behavior in the limit of high
curvature, R /�−.

For intermediate curvatures, the behavior of the cylindri-
cal membrane mobilities is similar to the spherical mem-
brane mobilities in many respects. For example, the mobility
in the pinned cylindrical membrane ��,pin displays a similar
nonmonotonic dependence on R /�−, although this behavior
is much more dramatic on the spherical membrane. This is
due to the fact that the effects of the rigid rotational motion
are much weaker in the cylindrical membrane than for the
spherical membrane. As a result, the nonmonotonic behavior
of �pin at intermediate curvatures—which, as argued above,
arises because of this rotational motion—is much weaker.
We can also see that the nature of the approach to the flat-
space limit for the cylindrical membrane mobilities depends
on the ratio of the fluid viscosities of the embedding fluids,
as it does on the sphere. In particular, when �+��− the
mobility decreases from the flat-space limit much more
quickly than when �+��−. Again, this effect is not as strong
as it is in the spherical membrane case, where the mobilities
approached the flat-space limit from above when �+��−: for
the cylindrical membranes, this only occurs for ��,pin. This is
not surprising: the geometric asymmetry between the two
embedding fluids is much stronger in the spherical case than
it is for the cylindrical case, since the interior fluid is
bounded inside the sphere but unbounded inside the cylinder.
As a result, the effects of asymmetry in the viscosities are
much weaker for a cylindrical membrane.

VI. DISCUSSION

In this article, we have presented first an extended intro-
duction to the hydrodynamics of flows on curved membranes
and then two illustrative examples of the effects of curvature.
These calculations were shown in sufficient detail to allow
the interested reader to pursue analogous calculations for a
variety of membrane shapes. We now summarize the princi-
pal results, discuss their significance, and propose experi-
mental tests of this work.

We begin by making a few general points. The focus of
our work is understanding the role of geometry in membrane
hydrodynamics. There are two distinct geometric effects that
must be accounted for in this system. The first is the effect of
intrinsic Gaussian curvature on the in-plane membrane
stresses. This result can best be seen in terms of the results of
Sec. II. For the purposes of comparison, it may be recalled
that in standard three-dimensional low Reynolds number hy-
drodynamics the velocity can be derived in terms of an axial
vector potential that ensures the incompressibility of the
flow. In addition, the velocity field itself must satisfy

Laplace’s equation. In Sec. II, Eq. �13� we compute the
analogous equation of motion for the velocity field in mem-
brane hydrodynamics. From this result, we note that there is
now an additional source for the Laplacian and that
geometry—specifically the Gaussian curvature of the
membrane—is responsible for this term. Physically, the ad-
ditional term can be understood by noting that, in the pres-
ence of Gaussian curvature, a spatially uniform flow field
generates internal shear stresses in the membrane. These ad-
ditional in-plane stresses arise entirely from the membrane’s
curvature without regard to the flows in the embedding flu-
ids.

The difference between our results for the spherical mem-
brane, which has a constant nonvanishing Gaussian curva-
ture, and the cylindrical membrane, which has an everywhere
zero Gaussian curvature, cannot be attributed solely to this
effect. After all the flat membrane studied previously also has
zero Gaussian curvature, but our results for particle mobili-
ties on cylindrical and flat membranes differ dramatically.
From a hydrodynamic perspective, there should be no differ-
ence between cylindrical and flat membranes in a vacuum �or
in embedding fluids with vanishingly small viscosities�. The
remaining difference thus highlights the importance of the
flows generated in the embedding fluids due to the flows in
the membrane. The effect of geometry on membrane hydro-
dynamics thus has two distinct sources: the first is due to the
alteration of the in-plane stresses by the Gaussian curvature;
the second is caused by the geometric modification of non-
local interactions between separate points on the membrane
mediated by flows through the embedding fluids. If one were
to solve the coupled hydrodynamic equations for a surface of
arbitrary but fixed geometry �perhaps numerically�, this dis-
tinction would still apply.

Another effect of nontrivial geometry is that it introduces
length scales in addition to the SD length. In fact, our calcu-
lations suggest that membrane hydrodynamics in the pres-
ence of curvature generically admits three lengths: the mean
curvature, and two SD lengths defined by the ratio of the
membrane viscosity to the viscosities of the two embedding
fluids. Of course, a flat membrane can also separate two dis-
tinct fluids of differing viscosities, but these two viscosities
enter the SD length symmetrically in the form of their mean.
This is the result of the reflection symmetry of the flat mem-
brane system about its normal. Curvature breaks this symme-
try, allowing the two viscosities to enter the solution in an
asymmetric manner. This is best seen in Eq. �38�, which
gives the relative weighting of the various spherical har-
monic modes of the velocity field in response to a point force
on the sphere. The dependence of the amplitudes upon the
viscosity of the interior fluid through �− vanishes for the l
=1 mode, which corresponds to the rigid body rotation of the
spherical membrane and the interior fluid. There is no analo-
gous term in which the influence of the viscosity of the outer
fluid �though �+� vanishes. A similar result can be seen for
the cylindrical membrane in Eq. �81�.

Comparing velocity fields on the membranes shown for
the sphere in Fig. 1 and for the cylinder in Fig. 3, we observe
a topologically determined effect. The motion of the particle
always introduces a nonvanishing and continuous velocity
vector field on the membrane. The Poincaré-Hopf theorem of
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algebraic topology requires such a continuous vector field on
a compact manifold to have topological defects whose
charges sum to the Euler characteristic of the manifold �20�.
For the sphere, the Euler characteristic is two. The vortices in
the velocity field of Fig. 1 �one shown in the figure and one
symmetrically placed on the other side of the sphere and not
shown� are the charge one defects required to satisfy this
theorem. The cylinder, on the other hand, has an Euler char-
acteristic of zero and thus requires no such defects in the
velocity generated on its surface by the motion of a particle,
as shown in Fig. 3. If one uses the so-called unsteady Stokes
approximation to examine time-dependent flows in three-
dimensional hydrodynamics at low Reynolds number, one
finds that vorticity obeys a diffusion equation �36�. When a
particle is initially moved, vortices of opposite sign �i.e., sign
of the curl of the velocity field� are generated at the particle
and move outward with diffusive scaling. At long times,
these vortices diffuse to infinity, leaving behind the vortex-
free Stokes flow around the moving particle. On the spheri-
cal membrane these vortices remain in the steady-state flow,
a dynamical consequence of the changed topology of the
surface.

Determinations of a particle’s mobility on a sphere pre-
sents a definitional ambiguity. One may define the mobility
as usual by the ratio of the velocity of the particle to the
applied force, but one must decide whether the contribution
to the particle’s velocity due to the rigid rotation of the entire
sphere should be included. Doing so produces a large correc-
tion to the mobility when the sphere is small compared to the
SD length. In that limit, the sphere rotates nearly as a rigid
body. Rather than proscribe the correct definition, we pre-
sented three options including the naïve mobility that in-
cludes this free rotation effect. Another possible definition is
the pinned mobility, in which we imagine the sphere to be
pinned to a substrate at the antipode of the moving particle.
This mobility provides the closest approximation to the ex-
perimental situations of which we are aware, but seems
somewhat arbitrary. Alternatively, measuring the particle’s
velocity in a frame that co-rotates with rigid body motion of
the sphere presents the most natural meaning of the mobility
of particles within the spherical membrane. The calculations
for the free mobility, pinned mobility, and co-rotating mobil-
ity are found in Eqs. �48�, �55�, and �57�, respectively. Vari-
ous limiting cases are discussed regarding these equations. In
general these functions cannot be written simply in closed
form, but the mobilities are plotted as a function of radius of
the spherical membrane in Fig. 2.

On the cylinder, particulate mobilities are anisotropic and
represented by a mobility tensor that has two independent
components. For the mobility in the direction along the long
axis of the cylinder, one can consider a single definition of
mobility—the one in which the particle’s velocity is mea-
sured in the rest frame of the cylinder. For the mobility in the
orthogonal direction, one can define three mobilities in anal-

ogy those defined for the sphere. Although the infinite cylin-
der cannot rotate as a rigid body in response to a finite point
force, the flow field around the particle approaches that of a
locally rigid rotation. The mobilities for particle motion on a
cylinder are given by Eqs. �89�, �92�, �100�, and �101�; they
are plotted as a function of the radius of the cylinder in Fig.
4.

Preliminary experimental tests of these results have been
performed by directly imaging the flow field around a rodlike
particle moving on a spherical membrane �8�. Since it is
possible to produce both spherical and cylindrical lipid bi-
layers �37�, we believe that more detailed tests of particle
mobilities on these surfaces can be performed using standard
measurements of diffusion, such as fluorescence recovery af-
ter photobleaching or particle tracking. Such diffusion mea-
surements indirectly measure the particle mobilities by the
Stokes-Einstein relation. It is also possible to use particle
tracking to directly measure the entire membrane velocity
field around a driven particle, as was done in Ref. �8� for
spherical interfaces. The same experiment should be possible
for flow field on cylindrical tethers as well.

We have studied membrane hydrodynamics on surfaces
having positive and zero Gaussian curvature. In order to
more fully understand the role of Gaussian curvature, it
seems reasonable to suggest that one should examine a sur-
face of constant negative Gaussian curvature as well. While
exotic surfaces of this sort do exist, e.g., the pseudosphere of
Beltrami, these are not simply realized experimentally.
Moreover finding analytic solutions for the hydrodynamic
flows of the embedding fluid in this case is challenging. It
may be possible to make progress on the measurement of
particulate mobilities in the presence of negative Gaussian
curvature by considering a catenoid—the minimal surface
formed by a membrane supported by two coaxial rings. This
surface, however, has a nonconstant but everywhere negative
Gaussian curvature; the variation in the Gaussian curvature
makes the eigenvalue problem associated with the solution
of the in-plane flows difficult. The solution of the flows of
the embedding fluids will also prove difficult. Along the
same lines, one may examine topologically distinct surfaces
that require changes in the number of topological defects in
the membrane velocity field in order to test the importance of
topological considerations for particulate mobilities.

Even for the two cases studied in detail here, one may
extend our results to the case of unsteady flows. For ex-
ample, how are the dynamics of the vortices associated with
the initiation of flow changed by geometry? Finally, we point
out that all of the calculations performed or proposed here
assume a fixed membrane geometry and may be approached
using the formalism discussed in this article, although we
expect more complex membrane geometries will require nu-
merical solutions to these equations. Membrane hydrody-
namics on deformable membranes �having a dynamic local
geometry� present a set of questions that cannot be addressed
with the current theory.
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